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Abstract 14 

Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial 15 

and temporal distribution. This study builds upon a recently introduced parameterization to 16 

improve the timing and spatial distribution of soil NO emission estimates in the Community 17 

Multi-scale Air Quality (CMAQ) model. The parameterization considers soil parameters, 18 

meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We 19 

incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate 20 

(EPIC) agricultural model to replace the annual generic data of the initial parameterization, and 21 

use a 12 km resolution soil biome map over the continental US. CMAQ modeling for July 2011 22 

shows slight differences in model performance in simulating fine particulate matter and ozone 23 

from IMPROVE and CASTNET sites and NO2 columns from Ozone Monitoring Instrument 24 

(OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects 25 

the expected O3 response to projected emissions reductions. 26 
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1 Introduction 27 

Nitrogen oxides (NOx=NO+NO2) play a crucial role in tropospheric chemistry. Availability of 28 

NOx influences the oxidizing capacity of the troposphere as NOx directly reacts with hydroxyl 29 

radicals (OH) and catalyzes tropospheric ozone (O3) production and destruction (Seinfeld and 30 

Pandis, 2012). NOx also affects the lifetime of reactive greenhouse gases like CH4 by influencing 31 

its dominant oxidant OH (Steinkamp and Lawrence, 2011), thus affecting the Earth’s radiative 32 

balance (IPCC, 2007). NOx also influences rates of formation of inorganic particulate matter 33 

(PM) (Wang et al., 2013) and organic PM (Seinfeld and Pandis, 2012).  34 

Soil NOx emissions accounts for ~15-40 % of the tropospheric NO2 column over the continental 35 

United States (CONUS), and up to 80% in highly N fertilized rural areas like the Sahel of Africa 36 

(Hudman et al., 2012). The estimated amount of nitric oxide (NO) emitted from soils is highly 37 

uncertain, ranging from 4-15 Tg-N yr−1, with different estimates of total global NOx budget also 38 

showing a mean difference of 60-70% (Potter et al., 1996; Davidson and Kingerlee, 1997; 39 

Yienger and Levy, 1995; Jaeglé et al., 2005; Stavrakou et al., 2008; Steinkamp and Lawrence, 40 

2011; Miyazaki et al., 2012; Stavrakou et al., 2013; Vinken et al., 2014). Soil NOx is mainly 41 

emitted as NO through both microbial activity (biotic/enzymatic) and chemical (abiotic/non-42 

enzymatic) pathways, with emission rates varying as a function of meteorological conditions, 43 

physicochemical soil properties, and nitrogen (N) inputs from deposition and fertilizer or manure 44 

application (Pilegaard, 2013; Hudman et al, 2012). The fraction of soil N emitted as NO varies 45 

with meteorological and soil conditions such as temperature, soil moisture content, and pH 46 

(Ludwig et al., 2001; Parton et al., 2001; van Dijk et al., 2002; Stehfest and Bouwman, 2006).   47 

Different biome types, comprised of vegetation and soil assemblages exhibit different NO 48 

emission factors under different soil conditions and climate zones. One of the early attempts to 49 

stratify soil NO based on different biomes by Davidson and Kingerlee (1997) involved 50 

compiling over 60 articles and 100 field estimates. They clearly identified biomes associated 51 

with low NO emissions like swamps, tundra, and temperate forests, and those with high soil NO 52 

fluxes like tropical savanna/woodland and cultivated agriculture. For instance, high soil NO 53 

fluxes were observed in croplands, savannahs or woodlands, N-rich temperate forests and even 54 

boreal/tropical forests with  low NO2
− availability in warm conditions and acidic soil (Kesik et 55 

al., 2006; Cheng et al., 2007; Su et al., 2011). This approach, however, fails to capture within-56 
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biome variation in NO emissions (Miyazaki et al., 2012; Vinken et al., 2014).  Steinkamp and 57 

Lawrence (2011) more recently compiled worldwide emission factors from a dataset consisting 58 

of 112 articles with 583 field measurements of soil NOx covering the period from 1976 to 2010, 59 

and regrouped them into 24 soil biome type based on MODIS land cover category as well as 60 

Köppen climate zone classifications (Kottek et al., 2006).  61 

N deposition can be a significant driver of soil NO emissions in N-limited settings or near strong 62 

N emissions sources, where both wet and dry deposition of N species act like an additional 63 

fertilizer source (Yienger and Levy, 1995; Hudman et al., 2012). The response of soil NOx 64 

emission to N deposition varies as a function of soil N status and land-use history of the land 65 

use/biome type. Mature forests for instance with already high initial soil N due to higher 66 

mineralization rates give higher soil NO flux than rehabilitated and disturbed ones (Zhang et al., 67 

2008). In agricultural soils, N deposition is a leading contributor to the inorganic N pool that 68 

eventually contributes to soil NO emissions (Liu et al., 2006; Pilegaard, 2013).  69 

Fertilizer (organic and inorganic) application represent controllable influences on soil N 70 

emissions (Pilegaard, 2013) and are leading sources of reactive nitrogen (N) worldwide 71 

(Galloway and Cowling, 2002). U.S. fertilizer use increased by nearly a factor of 4 from 1961 to 72 

1999 (IFIA, 2001).  Soil NO emissions increase with rising fertilizer application, with conversion 73 

rate of applied fertilizer N to NOx being up to ~ 11% (Williams et al., 1988; Shepherd et al., 74 

1991). Open and closed chamber studies have shown increasing fertilizer application to increase 75 

both NO and N2O fluxes simultaneously, but with variability in NO/N2O emission ratio 76 

(Harrison et al., 1995; Conrad, 1996; Veldkamp and Keller, 1997).  77 

Meteorological conditions influence soil NO emission rates. Large pulses of biogenic NO 78 

emissions often follow the onset of rain after a dry period (Davidson, 1992; Scholes et al., 1997; 79 

Jaeglé et al., 2004; Hudman et al., 2010). Soil NO pulsing events occur when water stressed 80 

nitrifying bacteria, which remain dormant during dry periods, are activated by the first rains and 81 

start metabolizing accumulated N in the soil. NO pulses of up to 10–100 times background levels 82 

typically last for about 1–2 days (Yienger and Levy, 1995; Hudman et al., 2012).  83 

Adsorption onto plant canopy surfaces can reduce the amount of soil NO emissions entering the 84 

broader atmosphere. Yienger and Levy (1995) (YL) soil NO scheme followed a Canopy 85 

Reduction Factor (CRF) approach (Wang et al., 1998) to account for the reduction of soil NO 86 
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emission flux via stomatal or cuticle exchange as a function of dry deposition within the canopy 87 

on a global scale.  88 

Contemporary air quality models such as the Community Multi-scale Air Quality (CMAQ) 89 

model most often use an adaptation of the YL scheme to quantify soil NO emissions as a 90 

function of fertilizer application, soil moisture, precipitation and CRF (Byun and Schere, 2006). 91 

However, YL has been found to underestimate emissions rates inferred from satellite and ground 92 

measurements by a factor ranging from 1.5 to 4.5, and to misrepresent some key spatial and 93 

temporal features of emissions (Jaeglé et al., 2005; Wang et al., 2007; Boersma et al., 2008; Zhao 94 

and Wang, 2009; Lin, 2012; Hudman et al., 2012; Vinken et al., 2014).  This overall 95 

underestimation can be attributed to several uncertainties in the modeling settings, such as 96 

inaccurate emissions coefficients, poor soil moisture data, deriving soil temperatures from 97 

ground air temperatures, neglecting nitrogen deposition and outdated fertilizer application rates 98 

(Yienger and Levy, 1995; Jaeglé et al., 2005; Delon et al., 2007; Wang et al., 2007; Boersma et 99 

al., 2008; Delon et al., 2008; Hudman et al., 2010; Steinkamp and Lawrence, 2011; Hudman et 100 

al., 2012).  101 

The Berkley Dalhousie Soil NO Parameterization (BDSNP) scheme, originally implemented by 102 

Hudman et al. (2012) in the GEOS-Chem global chemical transport model, outperforms YL by 103 

better representing biome type, the timing of emissions, and actual soil temperature and moisture 104 

(Hudman et al., 2010).  105 

 106 

Our approach builds upon BDSNP by using the Environmental Policy Integrated Climate (EPIC) 107 

biogeochemical model for dynamic representation of the soil N pool on a day-to-day basis. EPIC 108 

is a field scale biogeochemical process model developed by the United States Department of 109 

Agriculture (USDA) to represent plant growth, soil hydrology, and soil heat budgets for multiple 110 

soil layers of variable thickness, multiple vegetative systems and crop management practices 111 

(Cooter et al., 2012). EPIC can model up to 1 sq. km (100 ha) spatially and on a daily time scale 112 

(CMAS, 2015). EPIC simulations are compatible with spatial and temporal scale of CMAQ as 113 

well (Bash et al., 2013). EPIC accounts for different agricultural management scenarios, accurate 114 

simulation of soil conditions and plant growth to produce plan demand-driven fertilizer estimates 115 

for BDSNP (Cooter et al., 2012; Bash et al., 2013).  116 
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Baseline soil NO emission rate for each location (Hudman et al., 2012; Vinken et al., 2014), use 117 

a new soil biome map with finer-scale representation of land cover systems consistent with 118 

typical resolution of a regional model. We also built an offline version of BDSNP (stand-alone 119 

BDSNP), which can use benchmarked inputs from the CMAQ and allows quick diagnostic based 120 

on soil NO estimates for sensitivity analysis (Supplementary material Section S.2).   121 

 122 

 123 

2 Methodology 124 

 125 

2.1 Implementation of advanced soil NO parameterization in CMAQ 126 

2.1.1 Land surface model (LSM)  127 

Our implementation of the BDSNP soil NO parameterization in CMAQ uses Pleim-Xiu Land 128 

Surface Model (Pleim and Xiu, 2003). Compared to the coarser LSM in GEOS-Chem (Bey et al., 129 

2001), Pleim-Xiu provides finer-scale estimates of soil moisture and soil temperature based on 130 

solar radiation, temperature, Leaf Area Index (LAI), vegetation coverage, and aerodynamic 131 

resistance. The rich amount of information available from the Pleim-Xiu LSM enables refined 132 

representation of soil moisture and soil temperature for implementation in soil NO 133 

parameterization.  134 

2.1.2 Canopy reduction factor 135 

The original implementation of BDSNP in GEOS-Chem did not provide specific spatial-136 

temporal variation of CRF in each modeling grid, but used a monthly average CRF from Wang 137 

et al. (1998). Wang et al. (1998) included an updated CRF as part of their implementation of YL 138 

into GEOS-Chem. This CRF is based on wind speed, turbulence, canopy structure, deposition 139 

constants, and other physical variables. In the GEOS-Chem implementation of BDSNP, this CRF 140 

reduced the flux by ~ 16%, from 10.7 Tg-N yr-1 above soil to 9 Tg-N yr-1 above canopy 141 

(Hudman et al., 2012).  142 
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Our BDSNP implementation for CMAQ uses the same approach of integrating CRF as used in 143 

Wang et al. (1998) with the biome categorization based on Steinkamp and Lawrence (2011) and 144 

Kӧppen climate classes (Kottek et al. 2006) in the soil NOx parametrization itself.   145 

2.1.3 Fertilizer  146 

YL in CMAQ assumed a linear correlation between fertilizer application and its induced 147 

emissions over general growing season, May-August in the Northern Hemisphere and 148 

November-February in the Southern Hemisphere (Yienger and Levy, 1995) rather than peaking 149 

near the time of fertilization at the beginning of the local growing season. This likely caused 150 

inaccurate temporal representation of fertilizer driven emissions in certain regions (Hudman et 151 

al., 2012). The GEOS-Chem implementation of BDSNP applied a long-term average fertilizer 152 

application with a decay term after fertilizer is applied. Constant fertilizer emissions neglect an 153 

important phenomenon: applying fertilizer during a dry period when neither plants nor bacteria 154 

may have the water available to use it may result in a large pulse when the soil is eventually re-155 

wetted (Pilegaard, 2013). Such dry spring N fertilizer application can be quite significant, 156 

especially in the mid-west and southern plains in the US (Cooter et al., 2012). The current 157 

fertilizer data used for the BDSNP is scaled to global 2006 emissions by Hudman et al. (2012) 158 

using a spatial distribution for year 2000 from Potter et al. (2010). This global database reported 159 

by Potter et al. (2010) is already 8 years out of date in magnitude and 14 years out of date for 160 

relative distribution, and has relatively coarse resolution based on out-of-date long term average 161 

(national-level fertilizer data from 1994 to 2001). Using recent fertilizer application information 162 

is essential to soil NO estimates given the fact that N fertilizer is the major contributor to plant 163 

nutrient use in US, and its share has been increasing from 11,535 thousand short tons in 2001 to 164 

12,840,000 short tons in 2013 (USDA ERS, 2013). Our implementation of BDSNP into CMAQ 165 

is designed to enable updates by subsequent developers to use new year- and location- specific 166 

fertilizer data. We use the Fertilizer Emission Scenario Tool for CMAQ (FEST-C v1.1, 167 

http://www.cmascenter.org) to incorporate EPIC fertilizer application data into our CMAQ runs. 168 

2.1.4 N Deposition 169 
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YL in CMAQ neglects nitrogen deposition, which can result in an 0.5 Tg/yr underestimation in 170 

soil NOx globally (~5%) (Hudman et al., 2012). The implementation of the EPIC model in 171 

FEST-C inputs oxidized and reduced form of N deposition directly into soil ammonia and nitrate 172 

pools each day.  In Our implementation of BDSNP, these daily time series derive from previous 173 

CMAQ simulation.  Inclusion of this deposition N source acts to reduce the simulated plant-174 

based demand for additional N applications. 175 

2.1.5 Formulation of soil NO scheme 176 

Figure 1 provides the flow chart of the BDSNP scheme implementation, which has the option to 177 

run in-line with CMAQ, or offline as a stand-alone emissions parameterization. Static input files 178 

in Hudman et al. 2012 BDSNP implementation (labelled as ‘old’ in Fig. 1) such as those giving 179 

soil biome type with climate zone and global fertilizer pool are needed to determine the soil base 180 

emission value at each modeling grid. The Meteorology-Chemistry Interface Processor (MCIP) 181 

(Otte and Pleim, 2010) takes outputs from a meteorological model such as Weather Research and 182 

Forecasting (WRF) model (Skamarock et al., 2008) to provide a complete set of meteorological 183 

data needed for emissions and air quality simulations.  184 

There are seven key input environment variables and two key output environment variables in 185 

our implementation of BDSNP. Table S1 lists their names and corresponding functionalities.  186 

Our implementation of the BDSNP soil NOx emission, 𝑆𝑆𝑁𝑁𝑁𝑁𝑥𝑥 in CMAQ multiplies a base 187 

emission factor (A) by scaling factors dependent on soil temperature (T) and soil moisture (𝜃𝜃), 188 

i.e., f(T), g(𝜃𝜃) and a pulsing term (P) (equation 1). The base emission factor depends on biome 189 

type under wet or dry soil conditions. The pulsing term depends on the length of the dry period, 190 

rather than the accumulated rainfall amount considered by YL. The CRF term estimate the 191 

fractional reduction in soil NOx flux due to canopy resistance. 192 
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𝑆𝑆𝑁𝑁𝑁𝑁𝑥𝑥  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛𝑛𝑛 𝑁𝑁
𝑚𝑚 2𝑠𝑠

) =193 

 𝐴𝐴′𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏(𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎) × 𝑓𝑓(𝑇𝑇) × 𝑔𝑔(𝜃𝜃) × 𝑃𝑃�𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑� × 𝐶𝐶𝐶𝐶𝐹𝐹(𝐿𝐿𝐴𝐴𝐿𝐿,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝑔𝑔𝑀𝑀,𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀)                 (1) 194 

𝐴𝐴′𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 =  𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 +  𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎 × Ē                                                                                                           (2) 195 

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎(𝑀𝑀) =  𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎 𝐹𝐹𝑏𝑏𝑑𝑑𝐹𝐹(0) × 𝑀𝑀−
𝑡𝑡
𝜏𝜏1 + 𝐹𝐹 × 𝜏𝜏1 × �1 − 𝑀𝑀−

𝑡𝑡
𝜏𝜏1� +  𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎 𝐷𝐷𝑏𝑏𝐷𝐷(0) × 𝑀𝑀−

𝑡𝑡
𝜏𝜏2 +  𝐷𝐷 × 𝜏𝜏2 ×196 

(1 − 𝑀𝑀−
𝑡𝑡
𝜏𝜏2)                               197 

(3) 198 

Fertilizer and deposition both contribute to modifying the 𝐴𝐴′𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 emissions coefficients for each 199 

biome. Available nitrogen (Navail)  at time t from fertilizer and deposition is multiplied by 200 

emission rate, Ē, based on the observed global estimates of fertilizer emissions (~ 1.8 Tg-N yr-1) 201 

by Stehfest and Bouwman (2006) and added to biome specific soil NO emission factors (Abiome) 202 

from Steinkamp and Lawrence (2011) to give the net base emission factor (𝐴𝐴′𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 ) (Eq. (2) and 203 

Eq. (3)). The resulting Aʹ is multiplied by the meteorological scaling or response factors: f(T), 204 

g(𝜃𝜃), and P(ldry) as in Eq. (1). The soil temperature response or scaling factor f(T) is simplified to 205 

be exponential everywhere. NO flux now depends on soil moisture (𝜃𝜃) instead of rainfall, and it 206 

increases smoothly to a maximum value before decreasing as the ground becomes water 207 

saturated. In Eq. (3), F is fertilization rate (kg ha-1), D is the wet and dry deposition rate (kg ha-1) 208 

considered as an additional fertilization rate, and τ is decay time, which is 4 months for fertilizer 209 

(𝜏𝜏1) and 6 months for deposition (𝜏𝜏2) (Hudman et al. 2012).  210 

BDSNP uses a Poisson function to represent the dependence of emission rates on soil moisture 211 

(𝜃𝜃), where the parameters ‘a’ and ‘b’ vary for different climates such that the maximum of the 212 

function occurs at 𝜃𝜃 = 0.2 for arid soils and 𝜃𝜃 = 0.3 otherwise (Hudman et al. 2012). We adopt 213 

the same approach in CMAQ, as follows:  214 

𝑓𝑓(𝑇𝑇) ∗ 𝑔𝑔(𝜃𝜃) =  𝑀𝑀0.103∗𝑇𝑇 ∗ 𝑎𝑎 ∗ 𝜃𝜃 ∗ 𝑀𝑀−𝑏𝑏∗𝜃𝜃2            (4) 215 

The pulsing term depends on the length of the dry period (ldry) and a change in soil moisture 216 

instead of on the amount of precipitation (Hudman et al., 2012).  217 
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The pulsing term for emissions when rain follows a dry period is  218 

𝑃𝑃�𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑, 𝑀𝑀� = �13.01 ∗ ln�𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑� −  53.6� ∗ 𝑀𝑀−𝑐𝑐∗𝐹𝐹                 (5) 219 

In this equation, ldry is the length of the dry period that preceded the rain and c = 0.068 hour-1 220 

defines the exponential decay of the pulse. 221 

Beyond this basic implementation of the above stated BDSNP framework into CMAQ, there 222 

were major modifications (highlighted as ‘new’ in Fig. 1) in the form of: a) updating biome map 223 

consistent with CMAQ, b) incorporating year- and location- specific fertilizer data using EPIC 224 

outputs and c) development of a standalone BDSNP module. Our work focuses on those 225 

developments discussed in detail in the sections to follow. 226 

 227 

2.2 Soil biome map over CONUS 228 

The original implementation of BDSNP used the global soil biome data from the GEOS-Chem, 229 

with emission factors for each biome under dry/wet conditions taken from Steinkamp and 230 

Lawrence (2011) (Appendix Table A1). Our implementation in CMAQ uses a finer resolution 231 

(12 km) soil biome map over CONUS. The map is generated from the 30-arc-second 232 

(approximately 1 kilometer) NLCD40 (National Land Cover Dataset) for 2006, with 40 land 233 

cover/land use classifications. A mapping algorithm table (see Appendix Table A2) was created 234 

to connect the land use category to soil biome type (Table A1) based on best available 235 

knowledge. For the categories with identical names, such as ‘evergreen needleleaf forest’, 236 

‘deciduous needleleaf forest’, ‘mixed forest’, ‘savannas’ and ‘grassland’, the mapping is direct. 237 

Categories in NLCD40, which are subsets of the corresponding biome category, are consolidated 238 

into one category by addition. For example, ‘permanent snow and ice’ and ‘perennial ice-snow’ 239 

in NLCD40 are combined to form ‘snow and ice’; ‘developed open space’, ‘developed low 240 

intensity’, ‘developed medium intensity’, and ’developed high intensity’ are added to form 241 

‘urban and built-up lands’. For the categories appearing only in NLCD40, the mapping algorithm 242 

is determined by referring to the CMAQ mapping scheme, available in Cross-Section and 243 

Quantum Yield (CSQY) data files in the CMAQ coding. One such case is to map ‘lichens’ and 244 
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‘moss’ in NLCD40 to the category ‘grassland’ in soil biome. Furthermore, a model resolution 245 

compatible Köppen climate zone classification (Kottek et al., 2006) was added to allocate 246 

different emission factor for the same biome type e.g. to account for different altitudes of 247 

‘grassland’ at different locations. There are five climate zone classifications, namely A: 248 

equatorial, B: arid, C: warm temperature, D: snow, E: polar. A 12 km CONUS model resolution 249 

climate zone classification map (see Figure 2) was created using the Spatial Allocator based on 250 

the county level climate zone definition as the surrogate based on a dominant land use, 251 

(http://koeppen-geiger.vu-wien.ac.at/data/KoeppenGeiger.UScounty.txt).   252 

Figure 2 compares the 24 soil biome map with 0.25 degree resolution from the GEOS-Chem 253 

settings to the new 12 km resolution soil biome map we created here for CMAQ. Table A2 gives 254 

the biome type names with corresponding climate zones. 255 

The classification of simulation domain into arid and non-arid region with consistent resolution 256 

is also included in our implementation. Figure B1 shows the distribution of arid (red) and non-257 

arid (blue) regions. For the modeling grid classified as ‘arid’ region, the maximum moisture 258 

scaling factor corresponds to the water-filled pore space (θ) value equal to 0.2; while for the 259 

‘non-arid’ modeling grid, the  maximum moisture scaling factor corresponds with θ=0.3 260 

(Hudman et al., 2012). 261 

2.3 Representation of fertilizer N  262 

We implemented two approaches for representing fertilizer N. The first approach regrids 263 

fertilizer data from the global GEOS-Chem BDSNP implementation (Hudman et al. 2012) to our 264 

12 km resolution CONUS domain. That scheme uses the global fertilizer database from Potter et 265 

al. (2010) and assumed 37% of fertilizer and manure N is available (1.8 Tg-N yr-1) for potential 266 

emission. Figure B2 provides the day-by-day variation of total N remaining due to fertilizer 267 

application over CONUS during a year, and shows the typical cycle between growing season and 268 

non-growing season. The Potter data, however, are a decade old and at coarse resolution for 269 

county-level in US.  270 

Our second approach (Figure 3) uses the EPIC model as implemented in the FEST-C tool 271 

(Cooter et al. 2012) to provide a dynamic representation of fertilizer applications for a specific 272 

growing season. FEST-C (v1.1) generates model-ready fertilizer input files for CMAQ.  . Use of 273 
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FEST-C/EPIC instead of soil emissions from YL scheme has been shown to improve CMAQ 274 

performance for nitrate and ammonia in CONUS (Bash et al., 2013). The BELD4 tool in FEST-275 

C system was used to provide the crop usage fraction over our domain. We summed FEST-C 276 

data for ammonia, nitrate and organic, T1_ANH3, T1_ANO3 and T1_AON respectively in kg-277 

N/ha, to give a total soil N pool for each of 42 simulated crops (CMAS, 2015). This daily crop-278 

wise total soil N pool was then weighted by the fraction of each crop type at each modeling grid 279 

to get a final weighted sum total soil N pool usable in BDSNP. CMAQ v.5.0.2 can be run with 280 

in-line biogenic emissions, calculated in tandem with the rest of the model. Since the EPIC N 281 

pools already include N deposition, we designed our soil NO emissions module to be flexible in 282 

recognizing whether it is using fertilizer data such as Potter et al. (2010) that does not include 283 

deposition or EPIC that does. 284 

Figure 4 compares the FEST-C derived N fertilizer map and the default coarser resolution long-285 

term average fertilizer map from Potter. While the spatial patterns are similar, EPIC provides 286 

finer resolution and more up-to-date information. 287 

  288 

2.4 Model configurations and data use for model evaluations 289 

The CMAQ domain settings for CONUS as provided by the EPA were used to simulate the 290 

whole month of July in 2011. July corresponds to the month of peak flux for soil nitrogen 291 

emissions in the United States (Williams et al., 1992; Cooter et al., 2012; Bash et al., 2013) and 292 

is an active period for ozone photochemistry (Cooper et al., 2014; Strode et al., 2015). 293 

A ten day (21 June-30 June, 2011) spin-up time was used to minimize the influence from initial 294 

conditions. The domain consisted of 396 columns, 246 rows, 26 vertical layers, and 12 km 295 

rectangular cells using a Lambert Conformal Projection over North America. This configuration 296 

was consistent throughout the WRF-BDSNP-CMAQ modeling framework (see Figure 1). 297 

Meteorology data were produced through the WRF Model nudged to National Centers for 298 

Environmental Prediction (NCEP) and National Center for Atmospheric Research Reanalysis 299 

(NARR) data, which is comprised of historical observations and processed to control quality and 300 

consistency across years by National Oceanic and Atmospheric Administration (NOAA). 301 
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Emissions were generated using the Sparse Matrix Operator Kernel Emissions (SMOKE) model 302 

(CMAS, 2014) and 2011NEIv1.   303 

 304 

We applied CMAQ with three sets of soil NO emissions: a) Standard YL soil NO scheme, b) 305 

BDSNP scheme with Potter et al. (2010) fertilizer data set and biome mappings from GEOS-306 

Chem, and c) BDSNP scheme with EPIC 2011 data and new biome mappings. Within these 307 

three cases, we simulated the impact of anthropogenic NOx reductions applied to all contributing 308 

source sectors listed in the 2011 National Emission Inventory (NEI). For this purpose, we 309 

considered the baseline NOx reduction scenario from 2011 to 2025 that EPA’s Regulatory 310 

Impact Analysis (RIA) determined for Business as Usual (BAU) in the CONUS domain (Figure 311 

2A-1, Table 2A-1 in https://www3.epa.gov/ttn/ecas/docs/20151001ria.pdf). Table 1 gives a full 312 

list of modeling configurations settings used for achieving the above-mentioned simulations. 313 

Model simulations were evaluated against the following in situ and satellite-based data: 16 314 

USEPA Clean Air Status and Trends Network (CASTNET) sites for MDA8 O3 315 

(www.epa.gov/castnet), 9 Interagency Monitoring of Protected Visual Environments 316 

(IMPROVE) sites for daily average PM2.5 (Malm et al., 1994), and NASA’s OMI retrieval 317 

product for tropospheric NO2 column (Bucsela et al., 2013; Lamsal et al., 2014). Fig. 5 shows the 318 

spatial distribution of the ground sites used for validation of modeled estimates. The selected 319 

ground sites for model validation are mostly based in agricultural regions with intense fertilizer 320 

application rate and high NO fluxes, specifically the Midwest, southern plains, and San Joaquin 321 

Valley. 322 

 323 

We also simulated three sensitivity cases for the same time period and domain with the offline 324 

soil NO module: a) NLCD40 based (new) biome vs GEOS-Chem based (old) biome (using EF1 325 

in Table A1), b) EPIC 2011 vs Potter data and, c) Global mean biome emission factor (EF1 in 326 

Table A1) vs North American mean emission factor (EF3 in Table A1) (Supplementary material 327 

Section S.3).  328 

 329 
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3 Results and Discussion 330 

3.1 Spatial distribution of nitrogen fertilizer application and soil NO 331 

emissions over CONUS  332 

We demarcated the CONUS domain into six sub-domains (Figure 6) to analyze model outputs. 333 

The updated BDSNP model and EPIC fertilizer result in higher soil NO emission rates than YL 334 

and Potter. Emissions increase by a factor ranging from 1.8 to 2.8 in shifting from YL to 335 

BDSNP, even while retaining the Potter fertilizer data and original biome map, indicating that 336 

the shift from YL to BDSNP scheme is the largest driver of the increase in emissions estimates. 337 

EPIC and the new biome dataset further increase emissions over most of CONUS, except for the 338 

southwest region. In Midwest and Western US, the new biome map identified more cropland and 339 

shifted some grasslands to other land cover types such as forests, savannah and croplands, which 340 

exhibit higher soil NO emissions (Figure 2; Table A1). The Midwest region is characterized with 341 

the highest emission rate due to its abundant agricultural lands with high fertilizer application 342 

rates (Figure 4). 343 

3.2 Evaluation of CMAQ NO2 with satellite OMI NO2 observations 344 

The standard (version 2.1) OMI tropospheric NO2 column observations from NASA’s Aura 345 

satellite as discussed in Bucsela et al. (2013) and Lamsal et al. (2014) were used for comparison 346 

with our modelled NO2 vertical columns. To enable comparison, the quality-assured, clear-sky 347 

(cloud radiance fraction < 0.5) OMI NO2 data were gridded and projected to our domain by 348 

using ArcGIS 10.3. CMAQ modelled NO2 column densities in molecules per cm2 were derived 349 

using vertical integration and extracted for 13:00-14:00 local time, corresponding to the time of 350 

OMI measurements.  351 

We compared CMAQ simulated tropospheric NO2 columns with OMI product for regions 352 

showing highest sensitivity in soil NO switching from YL to BDSNP: Midwest, San Joaquin 353 

Valley in California and central Texas (see Appendix Figure B3). Switching from YL to our 354 

updated BDSNP (‘new’) module improved agreement with OMI NO2 columns in central Texas 355 
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but over-predicts column NO2 in the San Joaquin Valley and Midwest (Figure 7). Even the YL 356 

estimate was higher than OMI by a factor of two in the Midwest (Figure 7).  357 

3.3 Evaluation with PM2.5  and ozone observations 358 

Model results are compared with observational data from IMPROVE monitors for PM2.5 and 359 

CASTNET monitors for ozone. We first compute differences between ozone and PM2.5 estimates 360 

from the three simulation cases to identify sites influenced by the choice of soil NO scheme 361 

during our July 2011 episode (Figures 8 and 9). These highlights nine IMPROVE sites for PM2.5 362 

and 16 CASTNET sites for ozone (Figures 5, 8 and 9) where CMAQ results are sensitive to soil 363 

NO changes (Figure 6).  364 

Statistical comparisons of modeled and observed daily average PM2.5 at the nine IMPROVE sites 365 

are provided in Table 2. Mean Absolute Gross Error (MAGE) and Root Mean Square Error 366 

(RMSE) improved from 2.8 to 2.7 ug/m3 and 3.4 to 3.3 ug/m3 respectively when moving from 367 

YL to BDSNP with the new inputs. Both Pearson’s and Spearman’s ranked correlation 368 

coefficient (R) shows no significant change when soil NO module in CMAQ is switched from 369 

YL to BDSNP (Potter with old biome) and BDSNP (EPIC with new biome) (Tables 2). Use of 370 

the ranked correlation coefficient minimizes the impact of spurious correlations due to outliers 371 

but does not affect the analysis.  Switching from YL to our updated BDSNP (‘new’) module 372 

shows that the predicted versus observed fit becomes slightly closer to 1:1 (Figure 10). 373 

Numerical Mean Bias (NMB) and Numerical Mean Error (NME) improve from -28.5% to -374 

26.4% and 34.6% to 33.6%, respectively.  375 

In contrast to the PM2.5 results, the updated soil NO scheme yields mixed impacts on model 376 

performance for maximum daily average 8-hour (MDA8) ozone at the targeted 16 CASTNET 377 

sites (Table 3 and Figure 11). For the 11 agricultural/prairie sites, replacement of YL with 378 

BDSNP with new inputs increases NMB from 7.6% to 14.1% and NME from 15.7 to 19.3% 379 

(Table 3). The excess ozone may occur because FEST-C does not account for the loss of 380 

fertilizer N to the water stream (“tile drainage”) in wet conditions (Dinnes et al., 2002). Hudman 381 

et al. (2012) suggested θ = 0.175 (m3/m3) as threshold below which dry condition occur. During 382 

July 2011, in Midwest monthly mean soil moisture (θmean, m3/m3) is mostly > 0.175, indicating 383 
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possibility of wet conditions (Fig. S5). This can also be due to known wet bias in WRF simulated 384 

meteorology i.e. more perceived precipitation than observed (Zhang et al., 2009) which may 385 

result in high NO emissions in moist soils. Overestimation of O3 is due to higher NO emissions, 386 

as these regions comprise of mostly NOx limited rural locations.  387 

At the California CASTNET sites, BDSNP enhances model performance in simulating observed 388 

MDA8 ozone (Table 3).  This can be seen in the NMB, NME, MAGE, and RMSE comparisons 389 

between YL and BDSNP, though updating BDSNP to the newer inputs does not enhance 390 

performance (Table 3).   391 

3.4 Impact of soil NO scheme on ozone sensitivity to anthropogenic NOx 392 

perturbations  393 

We analyzed how the choice of soil NO parameterization affects the responsiveness of ozone to 394 

reductions in anthropogenic NOx emissions. We applied emission perturbation factors based on 395 

the 5.7 million ton reduction in baseline anthropogenic NOx emissions from 2011 to 2025 that 396 

US EPA simulated in its latest RIA (U.S. EPA, 2015). Table 4 gives the perturbation factors we 397 

used to obtain baseline anthropogenic NOx emissions for 2025 over all contributing sectors as 398 

listed from NEI 2011. Since our simulation is for July 2011 over CONUS, we used these 399 

perturbation factors rather than the net reductions in RIA to scale emissions in a similar pattern 400 

as given in RIA for annual baseline perturbations from 2011 to 2025 with BAU. 401 

 402 

Shifting from YL to the BDSNP soil NO scheme reduces the sensitivity of MDA8 O3 to 403 

anthropogenic NOx perturbations. The impacts are greatest in California and the Midwest, where 404 

shifting to BDSNP can reduce the expected impact of the anthropogenic NOx reductions by ~ 1 405 

to 1.5 ppbV. Changing the inputs within the BDSNP scheme has a smaller impact (Figure 12). 406 

Our results imply that the higher soil NO emissions from our updated BDSNP module shifts the 407 

ozone photochemistry to a less strongly NOx-limited regime. 408 

 409 
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4 Conclusions 410 

Our BDSNP implementation represents a substantial update from the YL scheme for estimating 411 

soil NO in CMAQ. Compared to the previous implementation of BDSNP in global GEOS-Chem 412 

model, our implementation in CMAQ incorporated finer-scale representation of its dependence 413 

on land use, soil conditions, and N availability. This finer resolution and updated biome and 414 

fertilizer data set resulted in higher sensitivity of soil NO to biome emission factors. Our updated 415 

BDSNP scheme (EPIC and new biome) predicts slightly higher soil NO than the inputs used in 416 

GEOS-Chem, primarily due to the use of 2011 daily EPIC/FEST-C fertilizer data and fine 417 

resolution NLCD40 biomes (Figure 6).   418 

Sensitivities to different input datasets were examined using our standalone BDSNP module to 419 

reduce computational cost. Switching from GEOS-Chem biome to new NLCD40 biome drops 420 

soil NO in the northwest and southwest portions of our domain due to the finer resolution biome 421 

map exhibiting lower emission factors in those regions. Replacing fertilizer data from Potter et 422 

al. (2010) with an EPIC 2011 dataset increased soil NO mostly in the Midwest (Supplementary 423 

material Figure S4).  424 

We compared tropospheric NO2 column densities output from our CMAQ runs with the three 425 

inline soil NO schemes to OMI observations as spatial average over regions sensitive to switch 426 

from YL to our updated BDSNP scheme. Temporal average of OMI and CMAQ simulated NO2 427 

column densities was done over the OMI overpass time (13:00-14:00 local time) for July 2011 428 

monthly mean. Figure 7 summarizes tropospheric NO2 column density comparisons between 429 

model and OMI satellite observation for aforementioned sensitive regions. Central Texas showed 430 

improvement with switch from YL to our BDSNP (‘new’) scheme. For July 2011, central Texas 431 

and San Joaquin Valley exhibit relatively dry soil conditions, whereas the Midwest was mostly 432 

wet (Supplementary material Figure S5).  Even with similar conditions as central Texas, San 433 

Joaquin region shows overall degradation. Overestimation of simulated NO2 columns up to twice 434 

of OMI over Midwestern US and San Joaquin valley for summer episodes has been exhibited 435 

earlier as well (Lamsal et al., 2014). Several factors, such as spatial inhomogeneity within OMI 436 

pixels and possible errors arising from the stratosphere-troposphere separation scheme and air 437 

mass factor calculations, can be attributed to this overestimation. Retrieval difficulties in 438 

complex terrain may explain the discrepancies in NO2 column over San Joaquin Valley even 439 
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though it shows slight improvement with updates within BDSNP (‘old’ to ‘new’) and has similar 440 

dry conditions as central Texas. 441 

We examined the performance of CMAQ under each of the soil NO parameterizations. Regions 442 

where soil NO parameterizations most impacted MDA8 ozone and PM2.5 were examined for 443 

model performance in simulating CASTNET MDA8 O3 and IMPROVE PM2.5 observations. 444 

For PM2.5, our updated BDSNP module (‘new’) showed the best performance (Table 2). 445 

Evaluations against MDA8 O3 observations found contrasting behavior for two different sets of 446 

CASTNET sites. The 11 mostly agricultural and prairie sites extending across the Midwest and 447 

southern US showed consistent overestimation as we moved from YL to BDNSP with new 448 

inputs, with bias jumping from ~ 7% to 14% and error from 15% to 19% (Table 3). However, the 449 

5 forest/national park sites most of which lie near the San Joaquin Valley by contrast showed an 450 

overall improvement in bias from ~ 13% to 10% and in error from ~ 17 % to 15%  (Table 3).  451 

Over-predictions of soil NO emissions especially in wet conditions may result from EPIC not 452 

properly accounting for on-farm nitrogen management practices like tile drainage. Crops such as 453 

alfalfa, hay, grass, and rice experience soil N loss due to tile drainage in wet soils (Gast et al., 454 

1978; Randall et al., 1997). Recent updates to FEST-C (v. 1.2) include tile drainage for some 455 

crops but not hay, rice, grass and alfalfa (CMAS, 2015). Tile drainage results in loss of fertilizer 456 

N to water run-off from wet or moist soils.  457 

We analyzed how the soil NO schemes affect the sensitivity of MDA8 ozone to anthropogenic 458 

NOx reductions by considering the 5.7 million tons/year reduction from 2011 levels that U.S. 459 

EPA expects for United States by 2025 with BAU scenario. These reductions were applied on 460 

basis of perturbation factors of relevant sectors keeping biogenic emissions unchanged for July 461 

2011, based on EPA’s annual baseline estimates between 2011 and 2025 (Table 4). These 462 

anthropogenic NOx reductions yield less reduction in MDA8 O3 under the BDNSP soil NO 463 

scheme than YL, with 1-2 ppbv differences over parts of California and the Midwest (Figure 12). 464 

The shift occurs because our updated BDSNP schemes have higher soil NO in these regions, 465 

pushing them toward less strongly NOx-limited regimes.  466 
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This work represents crucial advancement toward enhanced representation of soil NO in a 467 

regional model. Although possible wet biases and using dominant land cover rather than 468 

fractional in soil biome classification, may have over-predicted NO in agricultural regions in 469 

present study. The EPIC simulation used here lacks complete representation of farming 470 

management practices like tile, which can reduced soil moisture and soil NO fluxes. Inclusion of 471 

biogeochemistry influencing different reactive N species encompassing the entire N cycling 472 

could enable more mechanistic representation of emissions. For future work, there is a need for 473 

more accurate representation of actual farming practices and internalizing updated soil reactive N 474 

bio-geochemical schemes. More field observations are needed as well in order to increase the 475 

sample size for evaluation of modeled estimates soil emissions of reactive N species beyond NO. 476 

 477 

Code availability 478 

The modified and new scripts used for implementation of BDSNP in CMAQ Version 5.0.2 are in 479 

the supplementary material. Also provided as supplement is the user manual giving details on 480 

implementing BDSNP module in-line with CMAQ, as used in this work. Source codes for 481 

CMAQ version 5.0.2 and FEST-C version 1.1 are both open-source, available with applicable 482 

free registration at http://www.cmascenter.org. Advanced Research WRF model (ARW) version 483 

3.6.1 used in this study is also available as a free open-source resource at 484 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html.  485 
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 681 

 682 

Figure 1 Soil NO emissions modeling framework as implemented offline or in CMAQ (inline). 683 

“Old” refers to the Hudman et al. (2012) implementation in GEOS-Chem. “New” refers to our 684 

implementation in CMAQ. 685 

 686 

  687 
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688 

 689 

Figure 2 Biomes from GEOS-Chem (0.25° x 0.25°; top) and CMAQ MODIS NLCD40 (12 km x 690 

12 km; bottom) regrouped to match the classifications for which emission factors are available 691 

from Steinkamp and Lawrence (2011). See Tables A1 and A2 (right) for the mappings between 692 

classifications. The color-bar legends for classifications are as per NLCD definitions 693 

(http://www.mrlc.gov/nlcd11_leg.php).  694 
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 698 

Figure 3 Modeling framework for obtaining total soil N from EPIC using FEST-C. 699 
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 701 

Figure 4 Potter (left) and EPIC (right) annual fertilizer application (Kg N/ha). Since EPIC 702 
modeled only the U.S., Potter et al. (2010) is used in both cases to represent Canada and Mexico. 703 

704 
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 705 

Figure 5 CASTNET (Forest/National Park and agricultural sites) and IMPROVE sites in 706 
continental US for comparison of modeled and observed ozone and PM2.5. 707 

 708 

 709 

 710 
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 712 

Figure 6 Soil NO (tonnes/day) sensitivity to change from YL to BDSNP (Potter and old biome 713 
or ‘old’) (left) and to the fertilizer and biome scheme within BDSNP (right) over sub-domains 714 
(boxes). 715 
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 717 

 718 

Figure 7 Spatial average for Tropospheric NO2 (molecules cm-2) over regions with high soil NO 719 
sensitivity with switch from YL to BDSNP (as in Figure 6) with comparison to OMI NO2. NO2 720 
column are temporal average for July 2011 at OMI overpass time.  721 
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 723 

 724 

Figure 8 Changes in modeled daily average PM2.5 when switching from: a) YL to BDSNP 725 
(Potter fertilizer data with original biome map) (left) and b) BDSNP (Potter with original 726 
biomes) to BDSNP (EPIC with new biomes) (right). 727 

 728 

 729 

 730 

Figure 9 Changes in modeled maximum daily 8-hour ozone (MDA8) when switching from: a) 731 
YL to BDSNP (Potter fertilizer data with original biome map) (left) and b) BDSNP (Potter with 732 
original biomes) to BDSNP (EPIC with new biomes) (right). 733 
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 735 

 736 

 737 

Figure 10 Comparison of the three inline BDSNP-CMAQ cases with IMPROVE PM2.5 data 738 
(Malm et al., 1994) in continental US for Daily Average PM2.5 for July 2011. 739 

 740 
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 746 

 747 

Figure 11 Comparison of the three inline BDSNP-CMAQ cases with CASTNET MDA8 O3 data 748 
for forest/National Park sites in California (top, number of evaluation sites, n=147) and 749 
agricultural/prairie sites in mid-west and south US (bottom, n=311) for July 2011.  750 
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 752 

Figure 12 Difference in monthly mean MDA8 O3 perturbation between: a)   BDSNP (‘old’) – 753 
YL (left) and, b) BDSNP (‘new’) – BDSNP (‘old’) (right). MDA8 O3 perturbations are from 754 
perturbed anthropogenic NOx estimates 2011 base case to 2025 base case, BAU (US EPA, 755 
2015). 756 
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Table 1 Modeling configuration used for the WRF-BDSNP-CMAQ CONUS domain runs. 771 

WRF/MCIP         

Version: ARW V3.6.1 Shortwave 
radiation: RRTMG scheme 

Horizontal 
resolution: CONUS (12kmX12km) Surface layer 

physic: Pleim-Xiu surface model 

Vertical 
resolution: 26 layer  PBL scheme: ACM2 

Boundary 
condition: NARR 32km Microphysics: Morrison double-moment scheme 

Initial condition: NCEP-ADP Cumulus 
parameterization: Kain-Fritsch scheme 

Longwave 
radiation: RRTMG scheme Assimilation: Analysis nudging above PBL for 

temperature, moisture and wind speed 
BDSNP         
Horizontal 
resolution: Same as WRF/MCIP Emission factor: Steinkamp and Lawrence (2011) 

Soil Biome type: 

 
24 types based on 
NLCD40 (new) 
24 types based on 
GEOS-Chem LSM (old) 
 

Fertilizer 
database: 

EPIC 2011 based from FEST-C (new) 
 Potter et al. (2010) (old) 

CMAQ         

Version: V5.02  
Anthropogenic 
emission: NEI2011 

Horizontal 
resolution: Same as WRF/MCIP Biogenic 

emission: BEIS V3.1 in-line 

Initial condition: Pleim-Xiu (new) 
GEOS-Chem (old) 

Boundary 
condition: 

Pleim-Xiu (new) 
GEOS-Chem (old) 

Aerosol module: AE5  
Gas-phase  
mechanism: CB-05 

Simulation Case Arrangement (in-line with CMAQ) 
1.  YL: WRF/MCIP-CMAQ with standard YL soil NO scheme 
2.  BDSNP (Potter 

with old Biome or 
‘old’): 

WRF/MCIP-BDSNP-CMAQ  with Potter and old biome 

3.  BDSNP  (EPIC 
with new Biome 
or ‘new’): 

WRF/MCIP-BDSNP-CMAQ with EPIC and new biome 

Simulation Time Period 

 July 1-31, 2011 for CMAQ simulation with in-line soil NO BDSNP module 

 
Daily simulations in Year 2011 for standalone BDSNP soil NO BDSNP module (July 1-31, 
2011 for sensitivity analysis) 

Model Performance Evaluation 
USEPA Clean Air Status and Trends Network (CASTNET) data for MDA8 ozone 
Interagency Monitoring of Protected Visual Environments (IMPROVE ) Network (Malm et al., 1994) for PM2.5 
OMI NO2 satellite retrieval product as derived in Lamsal et al., 2014 for NO2 column 
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Table 2 Aggregated performance statistics of CMAQ modeled daily average PM2.5 for stations 773 
showing sensitivities with change in soil NO between YL scheme and our 2 inline BDSNP 774 
implementations (‘old’ and ‘new’) for CONUS in July 2011 as compared to observations at these 775 
sites  776 

 Metrics    

Daily average 

PM2.5 July 

(1 July- 31 

July), 2011 

Sample Size 81 

Mean observed (μg/m3) 8.26 

3 CMAQ inline cases YL 

BDSNP 

(Potter with 

old biome) 

BDSNP 

(EPIC with 

new biome) 

Mean predicted (μg/m3) 5.91 6.04 6.08 

MAGE (Mean Absolute 

Gross error) 
2.86 2.80 2.77 

RMSE 3.45 3.40 3.38 

R 

(correlation 

coefficient) 

Pearson’s 0.72 0.71 0.71 

Spearman’s 

Ranked 
0.65 0.63 0.63 

NMB (%) -28.52 -26.90 -26.44 

NME (%) 34.64 33.88 33.57 

 777 

 778 

  779 
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Table 3 Performance statistics of CMAQ modeled MDA8 Ozone for 16 CASTNET remote sites 780 

grouped into two categories: a) 11 sites with  moist or wet soil condition (monthly mean soil 781 

moisture (m3/m3), θmean > 0.175), and b) 5 sites with dry soil condition (θmean < 0.175) , using soil 782 

NO from YL and our two inline BDSNP schemes.  783 

July 2011 Metrics    

 

11 CASTNET 

sites (mostly 

agricultural/ 

prairie sites, 

Mostly wet soil 

conditions) 

Sample size 311  

Mean observed (ppbv) 51.76 

3 CMAQ inline cases YL 
BDSNP (Potter 

with old biome) 

BDSNP (EPIC 

with new biome) 

Mean modeled (ppbv) 55.25 57.93 58.60 

MAGE (Mean Absolute 

Gross error) 
7.78 9.16 9.65 

RMSE 9.41 10.96 11.47 

R 

(correlation 

coefficient) 

Pearson’s 0.50 0.51 0.50 

Spearman’s 

Ranked 
0.46 0.49 0.48 

NMB (%) 7.57 12.80 14.08 

NME (%) 15.65 18.38 19.33 

5 CASTNET 

sites (mostly 

forest/National 

Park sites near 

San Joaquin 

valley CA, 

Dry soil 

conditions) 

Sample size 147 
Mean observed (ppbv) 64.38 
Mean modeled (ppbv) 55.17 57.01 56.87 

MAGE (Mean Absolute 

Gross error) 
11.41 10.13 10.44 

RMSE 13.13 11.80 12.12 

R 

(correlation 

coefficient) 

Pearson’s 0.71 0.72 0.72 

Spearman’s 

Ranked 
0.68 0.69 0.69 

NMB (%) -13.14 -10.23 -10.35 

NME (%) 16.95 15.04 15.45 
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Table 4 Emission perturbation factors applied to anthropogenic NOx emissions for each sector 785 

listed in NEI as per EPA’s RIA base-line reductions from 2011 to 2025 with BAU (Table 2A-1, 786 

https://www3.epa.gov/ttn/ecas/docs/20151001ria.pdf) 787 

Sectors (NEI file names) Perturbation factor 

Electric Generating Unit(EGU)-point  

(ptimp- ptegu, ptegu_pk) 

0.7 

NonEGU-point (ptnonipm) 1 

Point oil and gas (pt_oilgas) 0.92 

Nonpoint oil and gas (np_oilgas) 1.108 

Wild and Prescribed Fires  

(ptwildfire, ptprescfire) 

1 

Residential wood combustion (rwc) 1.029 

Other nonpoint (nonpt) 1.039 

Onroad (onroad) 0.298 

Nonroad mobile equipment sources (nonroad) 0.5 

Category 3 Commercial marine vessel 

(c3marine) 

0.77 

Locomotive and Category 1/Category 2 

Commercial marine vessel (c1c2rail) 

0.62 

 788 

 789 

 790 

 791 

 792 

 793 
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Appendix 795 

Table A1 List of 24 soil biome emission factor (EF) from Steinkamp and Lawrence (2010) 796 

ID MODIS 

 land cover 

Köppen 

main 

climate(1) 

EF1 

(world 

geometric 

mean) 

EF2 

(world 

arithmetic 

mean) 

EF3 

(North 

American) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

 

Water 

Permanent wetland 

Snow and ice 

Barren 

Unclassified 

Barren 

Closed shrub land 

Open shrub land 

Open shrub land 

Grassland 

Savannah 

Savannah 

Grassland 

Woody savannah 

Mixed forest 

Evergreen broadleaf forest 

Deciduous broadleaf forest 

Deciduous needle. forest 

Evergreen needle. forest 

Deciduous. broadl. forest 

Evergreen broadl. forest 

Cropland 
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(1). A-equatorial, B-arid, C-warm temperature, D-snow, E-polar (see Figure 2 for spatial map) 797 

 798 

 799 
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Table A2 Mapping table to create the ‘new’ soil biome map based on NLCD40 MODIS land 800 

cover categories 801 

ID NLCD40 MODIS CATEGORY (40) ID SOIL BIOME CATEGORY (24) 
1  Evergreen Needle leaf Forest 19 Evergreen Needle leaf Forest 
2  Evergreen Broadleaf Forest 16 and 21 Evergreen Broadleaf Forest 
3  Deciduous Needle leaf Forest 18 Dec. Needle leaf Forest 
4  Deciduous Broadleaf Forest 17 and 20 Dec. Broadleaf Forest 
5  Mixed Forests 15 Mixed Forest 
6 Closed shrublands 7 Closed shrublands 
7  Open shrublands 8 and 9 Open srublands 
8  Woody Savannas 14 Woody savannah 
9  Savannas 11 and 12 Savannah 

10  Grasslands 10 and  13 Grassland 
11  Permanent Wetlands 2 Permanent Wetland 
12  Croplands 22 Cropland 
13  Urban and Built Up 23 Urban and build-up lands 
14  Cropland-Natural Vegetation Mosaic 24 Cropland/nat. veg. mosaic 
15  Permanent Snow and Ice 3 Snow and ice 
16  Barren or Sparsely Vegetated 6 Barren 
17  IGBP Water 1 Water 
18  Unclassified 1 Water 
19  Fill value 1 Water 
20  Open Water 1 Water 
21  Perennial Ice-Snow 3 Snow and ice 
22  Developed Open Space 23 Urban and build-up lands 
23  Developed Low Intensity 23 Urban and build-up lands 
24  Developed Medium Intensity 23 Urban and build-up lands 
25  Developed High Intensity 23 Urban and build-up lands 
26  Barren Land (Rock-Sand-Clay) 24 Cropland/nat. veg. mosaic 
27  Unconsolidated Shore 24 Cropland/nat. veg. mosaic 
28  Deciduous Forest 16  and 21 Evergreen Broadleaf Forest 
29  Evergreen Forest 19 Evergreen Needle leaf Forest 
30  Mixed Forest 15 Mixed Forest 
31  Dwarf Scrub 8 and 9 Open shrublands 
32  Shrub-Scrub 8 and  9 Open shrubland 
33  Grassland-Herbaceous 10 and  13 Grassland 
34  Sedge-Herbaceous 14 Woody savannah 
35  Lichens 10 and  13 Grassland 
36  Moss 10 and  13 Grassland 

 
37  Pasture-Hay 24 Cropland/nat. veg. mosaic 
38  Cultivated Crops 22 Cropland 
39  Woody Wetlands 2 Permanent Wetland 
40  Emergent Herbaceous Wetlands 2 Permanent Wetland 

 802 
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 803 

Figure B1 Arid (red) and non-arid (blue) region over Continental US (12km resolution) 804 

 805 

 806 

Figure B2 Daily variation of total N from fertilizer application (from Potter et al. (2010)) 807 

processed from BDSNP to establish timing over continental US throughout 2011 808 

 809 
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 810 

Figure B3 Difference of OMI NO2 column with NO2 column simulated from the three inline 811 

CMAQ cases: YL, BDSNP (Potter with old biome), BDSNP (EPIC with new Biome) (left to 812 

right) over OMI overpass time averaged for July 2011 over CONUS.  Note: In contour plots, 813 

white refers to gaps/no-fill values in OMI product and dark red at upper corners are due to gaps 814 

in CMAQ NO2 column after temporal averaging at OMI overpass time.   815 
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